

Underground Flow Equalization System Project

Neighborhood Meeting May 21, 2019

Agenda

- •Why we need the Underground Flow Equalization System (UFES) and what it is
- How UFES will be constructed
- Project schedule
- •Q&A session

Sewer Overflow Impacts & Regulatory Violations

Sanitary Sewer Overflow (SSO) at Saratoga Dr & Delaware St

Why Is the UFES Project Needed?

- Meet Cease & Desist Order requiring prevention of SSOs
- Provide System Capacity and Optimize Collection System Performance
- Improve safety and reliability of the system and reduce discharges of raw sewage in San Mateo and the Bay.

Existing Storage System on Delaware St

Temporary baker tanks used for flow equalization to mitigate SSOs

Temporary Baker Tanks

Project Location & Features

- Event Center, east corner
- Approximate 5.3 million gallon underground temporary holding structure
- New diversion system (diversion sewer, diversion structure, and force main)
- Above-ground electrical building
- Continuous odor control facilities

Project Location & Features

What to Expect During Construction

- UFES step by step activities:
 - —Site preparation
 - —Shoring options
 - —Dewatering
 - —Excavation
 - —Foundation piles
 - —Concrete
- Pipeline construction
- Approximate duration of each phase
- Monitoring
- Control of traffic, vibration, groundwater levels, dust, and noise

Phase 1: Site Preparation

Average trips per day: 20 heavy vehicle trips 20 worker commute trips

Duration: 3 months

Phase 2: Shoring Installation

Average trips per day: 95 heavy vehicle trips 100 worker commute trips

Duration: 4 months

What is "Shoring"?

- An engineered system that safely holds an excavation open for an extended duration
- "A large wall that holds the hole open"
- Water is removed from inside and around to maintain stability
- Can be removed (temporary) or integrated into the structure

Site soil/groundwater conditions dictate feasible shoring methods

- Analyzed soils no bedrock in our construction zone
- Mostly clay soils
- Groundwater is close to the surface, 3'-5' below ground
- Soil and groundwater investigations determined no contamination
- Conducted dewatering pump test to observe groundwater level fluctuations in nearby wells

Shoring system evaluation process

- We evaluated 6 different typical shoring methods
- What factors did we use?
 - —Technical feasibility does it work for this site?
 - —Duration of installation
 - —Dewatering requirements
 - -Noise
 - —Vibration
 - —Cost

Shoring Systems

Sheet piling is not technically feasible for this project

- Approved for contractor selection
 - —Slurry walls
 - —Concrete deep soil mixing (CDSM) walls
 - —Secant pile walls
- All technically feasible, similar duration, and is quieter

Shoring Alternative - Slurry Wall Construction

Shoring Alternative - Cement Deep Soil Mixing

Shoring Alternative - Secant Piles

Dewatering

The shoring and dewatering methods shown are not technically feasible for our project

UFES Dewatering

Controlling Groundwater – Bay Meadows

UFES Dewatering

UFES Dewatering

- Significantly reduces potential for settlement
- Compatible with allowable impermeable shoring systems
- Interior dewatering limits groundwater table drawdown

Construction Monitoring

- Install more observation wells near the site before construction to monitor groundwater levels
- Survey and document existing nearby structures before, during and after construction
- Monitor noise and vibration
- Enforceable stop action thresholds that exceed specified acceptable limits

Phase 3: Excavation

Average trips per day: 115 heavy vehicle trips 100 worker commute trips

Duration: 3 months

Relative to Other Projects

- UFES is smaller in size and scale
- UFES shoring and dewatering methods prevent settlement
- Less truck trips
- Some similar construction activities (earthwork)
- Similar traffic haul routes

Windermere (Seattle) Flow Equalization Facility During Excavation

Phase 4: Foundation Pile Installation

Average trips per day: 70 heavy vehicle trips 20 worker commute trips

Duration: 2 months

What are "Foundation Piles"?

- Prevent uplift (floating) from high groundwater
- Prevent settlement (sinking)
- Keep the structure in place during seismic events

Ground Level

Bottom of Excavation

Micropiles under structure

Pile system evaluation process

- We evaluated 7 different typical pile types and installation methods
- What factors did we use?
 - —Technical feasibility does it work for this site?
 - —Shoring system compatibility
 - —Duration of installation
 - -Noise
 - —Vibration
 - —Cost

Technically feasible foundation pile systems

Impact (or hammered) piles were eliminated from consideration

- Cast-in-Drilled-Hole piles
- Drilled Micropiles (Selected Method)

All technically feasible, similar duration, and meet other key criteria

Impact Piles

Removed from consideration for this project

Drilled Micropiles

Selected Method

Sound Thermometer

Drilled Micropile Installation

Section Showing Anticipated Sound Levels From Micropiling Activities – Bay Meadows

Drilled Micropile Installation

Phase 5: Concrete

Average trips per day: 89 heavy vehicle trips 20 worker commute trips

Duration: 9 months

Pacifica Construction

Phase 5: Site Finishing

Average trips per day: 58 heavy vehicle trips 20 worker commute trips

Duration: 8 months

Diversion System

(Diversion Sewer, Diversion Structure, and Force Main along Delaware St and Saratoga Dr)

Diversion System Alignments & Locations

Diversion Structure

—South of Saratoga and Delaware Intersection

Diversion Sewer

—New 36-inch diameter, 15 to 22 feet deep

Force Main

−18-inch sewer pipe

Diversion Sewer Open Trench Construction

Trenchless Construction

Borel Creek Culvert
 Undercrossing at Delaware
 Horizontal directional drilling
 of New 18" Force Main

Saratoga Force Main
 Cured in Place Pipe Lining
 of Existing 18" Pipe

Diversion Structure Construction

- Excavation in intersection of Delaware and Saratoga
- Temporary shoring
- Traffic control around excavation
- Duration: 3 months

Dust Control

Streets

Wet Sweeping on
Surrounding streets and around
Construction Site

Covered trucks, site watering, fence screening and tire wash facilities

Construction Areas

Construction Hours

- Allowable construction hours are Monday to Friday, 7 am 7 pm
- Typical construction day is expected to be & 10 hours
- Construction work is not planned for weekends or outside hours of 7 am – 7 pm
 - Exceptions may be needed, but only with City approval (e.g. concrete pour)

Construction Traffic Routes

City Designated Truck/Haul Routes

Proposed Project Routes

Average Heavy Construction Vehicles per Day

Post-Construction Operations & Maintenance

Future Operations and Maintenance

- Facility expected to be used less than 20 times per year on average
- Temporarily holds flows for up to 24 hours
- Holding structure cleaned with the tipping buckets and emptied after each use
- Inspected by City after each event

Odor Control

Highly efficient technology: carbon odor scrubbers

Large pore surface area adsorbs large mass of odors

3 grams has surface of a football field!

Summary

- Selected Drilled Micropiles
- Selected three impermeable shoring alternatives
- Dewatering inside the excavation limits groundwater drawdown
- Contractor's traffic management plan requires City approval
- Other mitigation (noise, vibration, dust) will require plans and approvals
- Monitoring will be ongoing during construction and actions will be taken
- Live response for citizen inquiries and a dedicated phone number

Anticipated Construction Schedule

Phase 1 -**Site Prep** 3 Months Phase 2 -**Shoring** 4 Months Phase 3 -**Excavation** 3 Months Phase 4 -**Piles** 2 Months **Phase 5 - Concrete** 9 Months

Phase 6 - Site Finishing

8 Months

On-Going Monitoring During Construction

Next Steps

- Draft EIR Comment Period Ends: May 31, 2019
- Planning Commission Study Session: August 27, 2019
- Planning Commission Recommendation (Final EIR/Special Use Permit) Meeting:
 September 24, 2019
- City Council Approval (Final EIR/Special Use Permit) Meeting: October 7, 2019
- Anticipated Construction Start: Spring 2020

Aligning with the Clean Water Program Goals

Replace aging infrastructure and facilities

Build wet weather sewer system capacity assurance to prevent overflows

Meet current and future regulatory requirements

Align with the City of San Mateo and Foster City's sustainability goals

Protecting the Bay and our Community for a Sustainable Future

Please share methods to effectively communicate

Sign Up for Email Updates

info@cleanwaterprogramsanmateo.org

Visit the UFES Project Website

www.CleanWaterProgramSanMateo.org/UFES

Call the Clean Water Program

650-727-6870

Follow the City's Social Media

