

Public Works Commission Meeting Underground Storage Facility Alternatives Process & Progress Update

Wednesday, October 12, 2016

Purpose

- Update Commission on activities over the past month
- Outreach Process Updates
- Presentation of Seven Topic Areas
 - Clean Water Program Drivers and Goals
 - Wastewater Management Additional Information
 - Program Approaches
 - CEQA Process
 - Alternatives Selection Process
 - Construction Impacts & Operational Considerations
 - Environmental & Air Quality Mitigations
- Question & Feedback

Outreach Process Updates

- Two October Community Meetings (193 attended)
- Neighborhood Meetings
- Receipt of emails & hotline messages
- Presentations and FAQ responses on CWP website

Topic 1

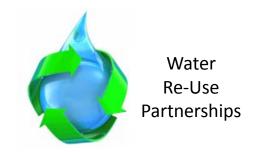
Clean Water Program Drivers & Goals

Clean Water Program – Drivers & Goals

Replace Aging Infrastructure

Collection System

WWTP


Provide Higher Levels of Treatment & Capacity Assurance

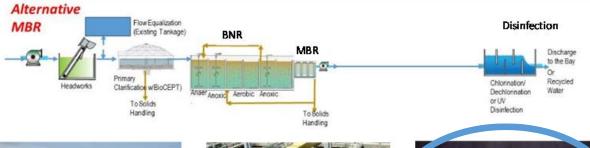
RWQCB Cease & Desist Order

NPDES Permit

Address Sustainability, Climate Change, & Biosolids/Energy

Infrastructure Sustainability Metrics

What is the Clean Water Program?


1. Collect

Rasin 1 Wastewater Basin 4 Basin 2 Basin 3

Sewer In-System Storage Upgrades to Prevent SSOs

2. Treat

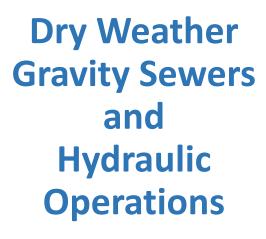
New WWTP Treatment Approach to Prevent Sewer Overflows to SF Bay

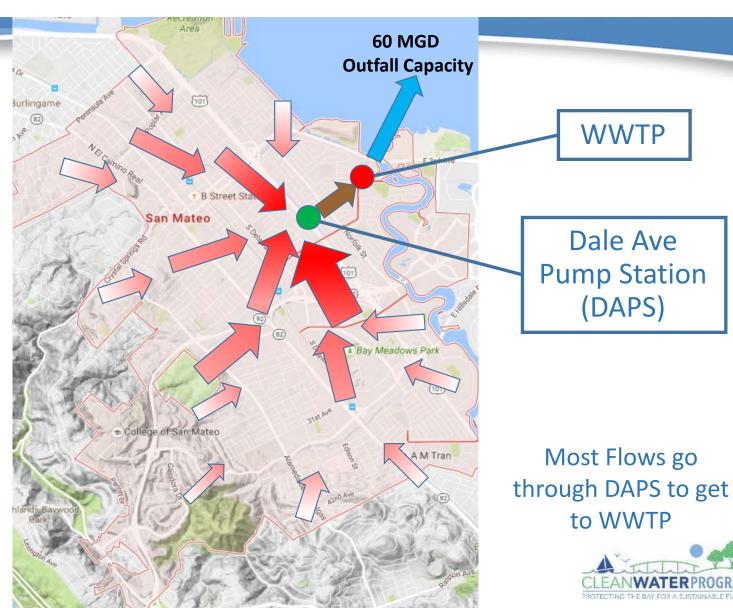
Before & After Treatment

.

3. Discharge

Reusable Clean Water

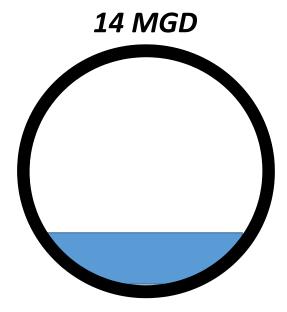



Topic 2

Wastewater Management Additional Information

WWTP

Dale Ave

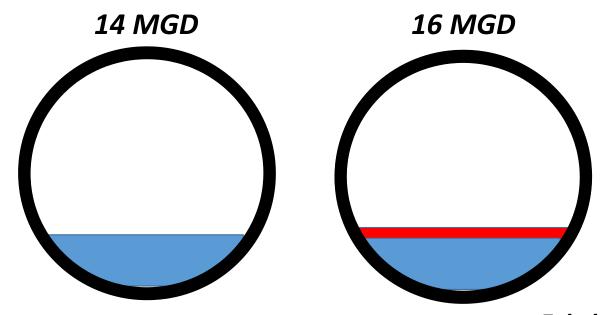

Pump Station

(DAPS)

Most Flows go

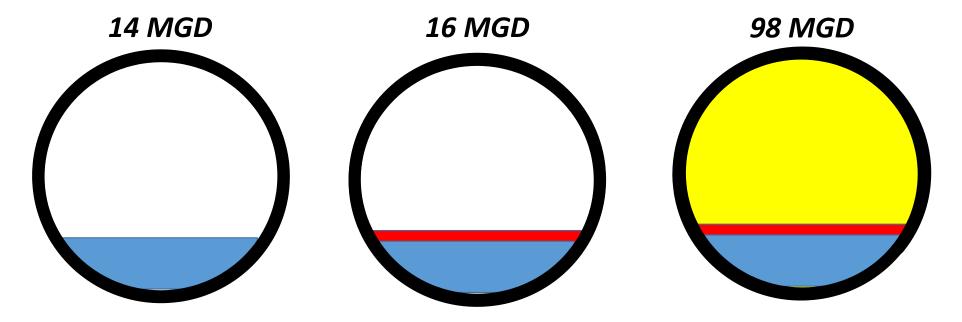
to WWTP

Sewer Capacity



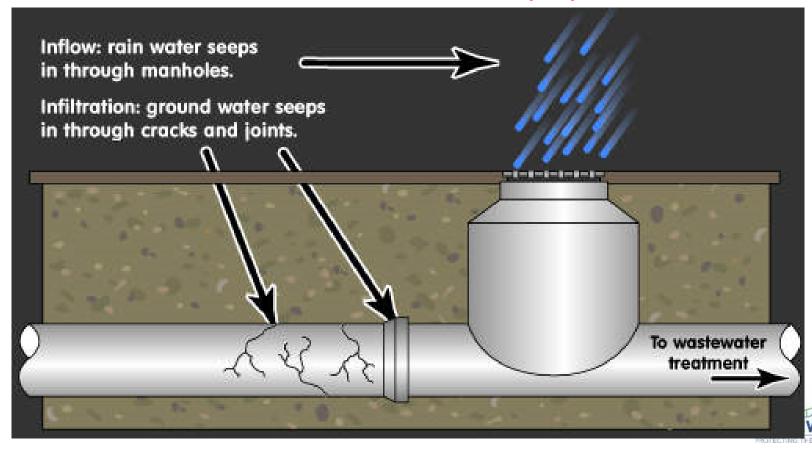
Existing dry weather sewage

Sewer Capacity

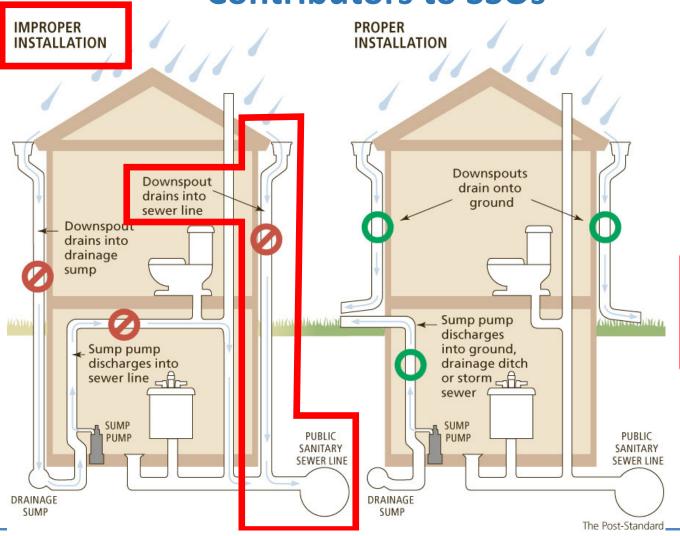


Existing and future dry weather sewage

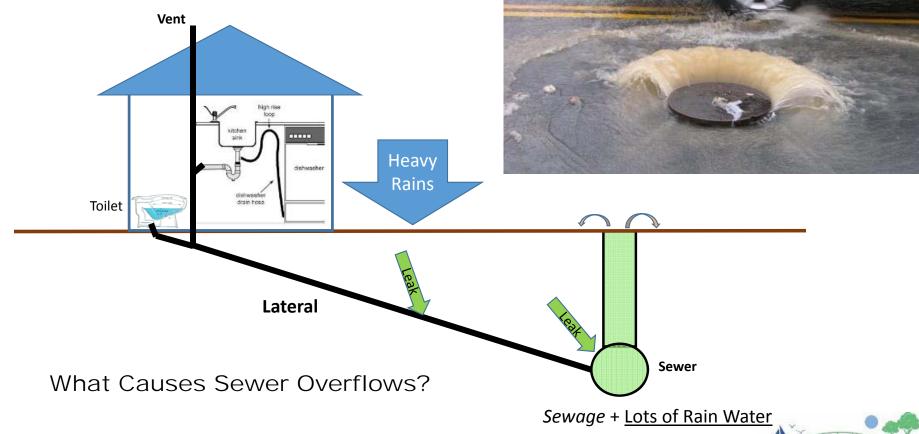
Sewer Capacity



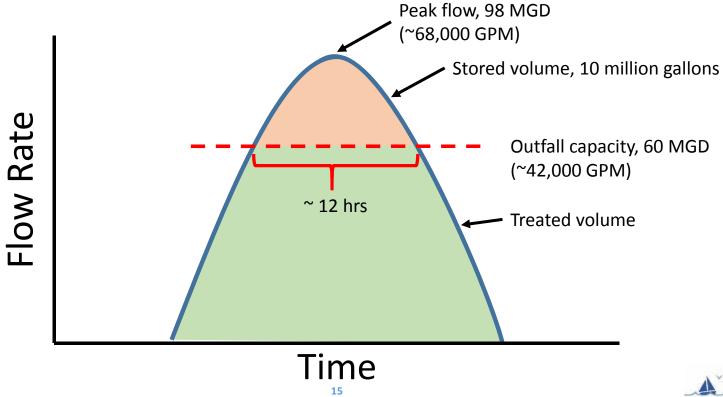
Existing and future sewage with rain induced inflow and infiltration


Contributors to SSOs

INFILTRATION & INFLOW (1&I)



ILLEGAL STORM DRAIN CONNECTIONS

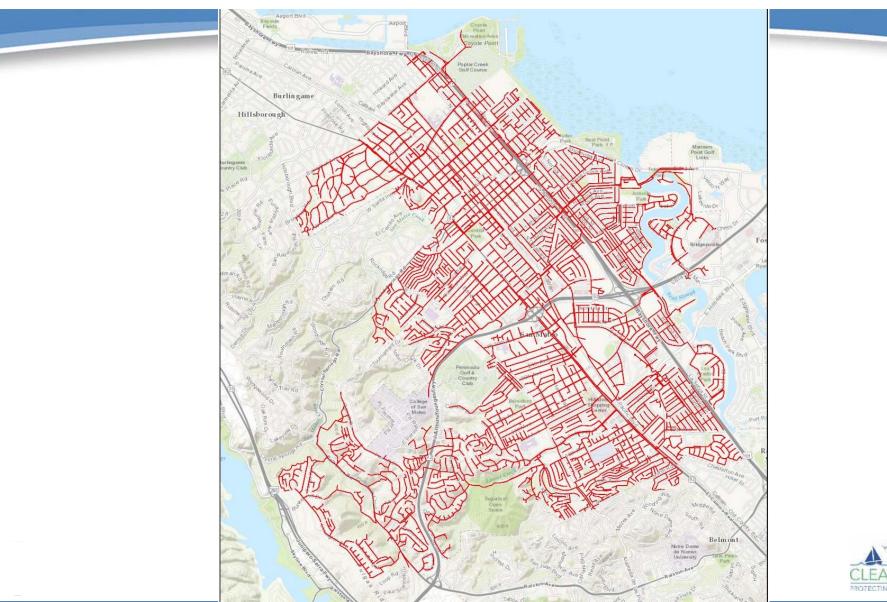


Wastewater Basics: Peak Wet Weather Conditions & SSOs

Plant Flow and Storage Volume

Topic 3

Program Approaches


Program Approaches

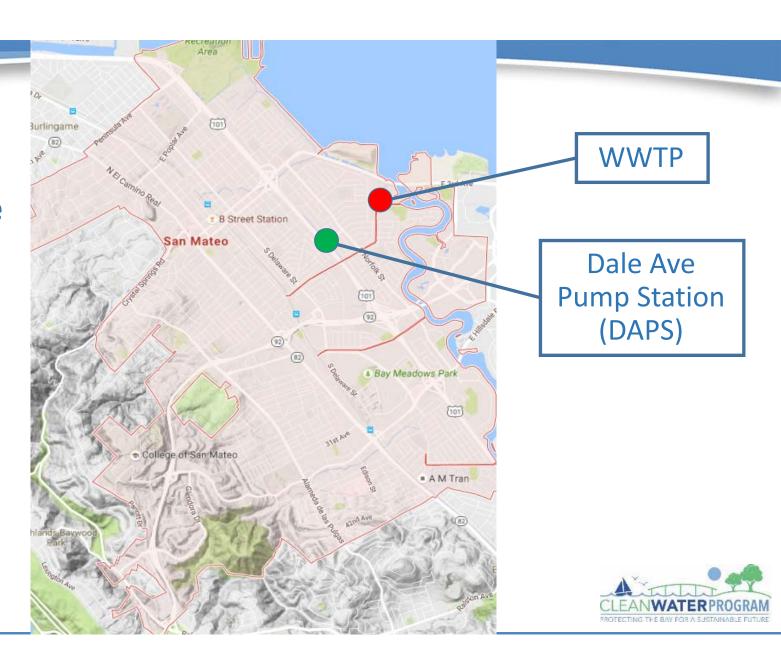
Alternative	Major Characteristics	Significant Impacts	Meets CWP Objectives?
In-System Storage Program	One or more underground storage basins upstream of the Dale Avenue Pump Station to detain wastewater flows during peak wet weather events	 Significant and unavoidable construction noise and vibration impacts All other impacts less than significant with mitigation 	Yes
Full Conveyance Program	New pump station next to the existing Dale Avenue Pump Station and larger pipelines to deliver peak wet weather flows to WWTP.	 Significant and unavoidable construction noise and vibration impacts. All other impacts less than significant with mitigation. 	Yes
Conveyance system replacement program	Replacement of all pipelines in City's conveyance system.	 Significant and unavoidable construction noise and vibration impacts. Would not address all SSOs or aging infrastructure at WWTP. Would not meet current or future regulatory requirements. Would not support creation of opportunities for recycled water use. 	No

Program Approaches – Conveyance System Replacement

"Why don't we just fix all the leaks by replacing all the pipes?"

Program Approaches – Conveyance System Replacement

Conveyance System Replacement


- Replace ALL pipes
- Does not Include WWTP Improvements
- ~235 miles of sewer mains
 - 64% mains in roads [~ 150 miles]
 - 36% mains in easements [~ 85 miles]
 - City Wide Impacts to All Properties
- ~28,000 lateral connections
- \$1.3 Billion (Conveyance System Only, without WWTP Improvements)
- ISS Alternative is \$900 M and includes both CS & WWTP Improvements
- Approx. 3 to 4 times longer construction duration

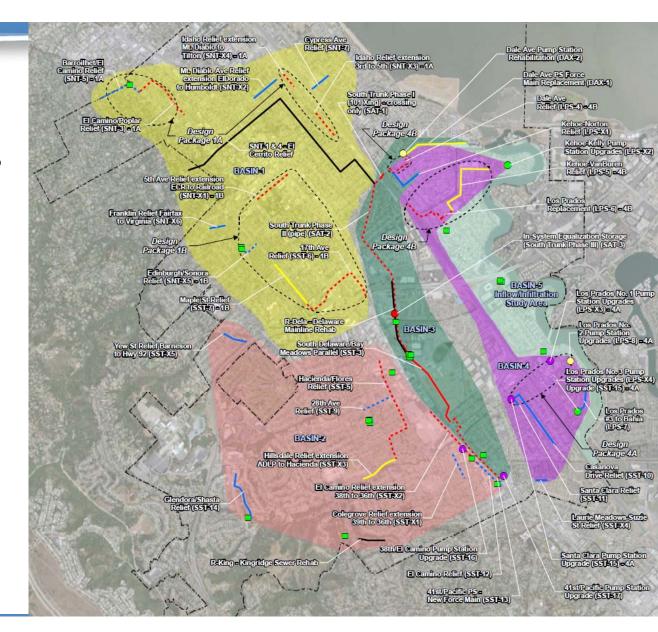
Full Conveyance vs	In-System	Storage A	Iternatives
---------------------------	------------------	------------------	-------------

run Conveyance vs m-system Storage Aiternatives				
Full Conveyance	In-System Storage			
All wet weather storage located at WWTP	Wet weather storage located upstream of WWTP & at WWTP			
Bigger pipes and pump station to convey all flow to WWTP	 Smaller pipes to convey controlled amount of wet weather flows 			
Larger pipes will increase odor	Better odor control			
 New wet weather pump station and force main at Dale Ave location 	Independent from WWTP improvementsSooner benefit to reducing SSOs			
 WWTP improvements must be completed before Full 	 Preserves space at WWTP for future improvements for recycled water 			
Conveyance alternatives can be implemented	 Estimated at least \$30M less expensive than full conveyance alternative for same WWTP Option 			

Full Conveyance Alternative

New Dale Ave Pump Station

Full Conveyance vs In-System Storage Alternatives


Council selected the In-System Storage Alternative in June 2016

In-System Storage

- Wet weather storage located upstream of WWTP & at WWTP
- Smaller pipes to convey controlled amount of wet weather flows
- Better odor control
- Independent from WWTP improvements
- Sooner benefit to reducing SSOs
- Preserves space at WWTP for future improvements for recycled water
- Estimated at least \$30M less expensive than full conveyance alternative for same WWTP Option

- 40 projects
- 31 pipeline projects
- 13 miles of pipe replacement
- 8 pump stations
- 1 in system storage facility

Topic 4 CEQA Process

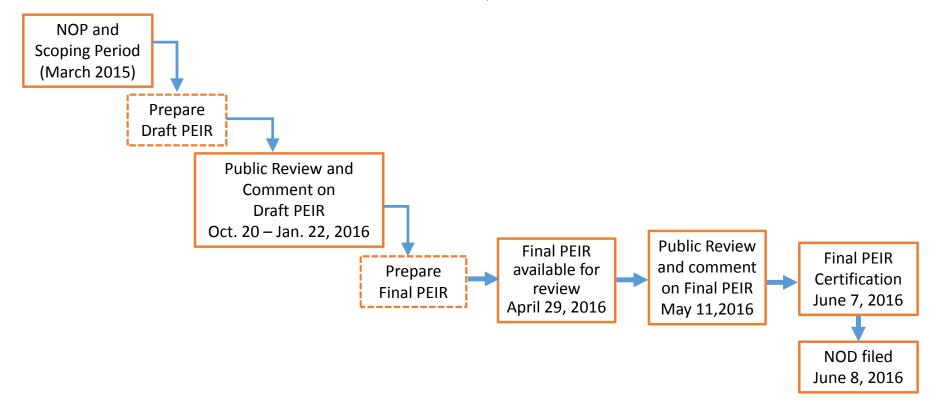
What is CEQA?

The California Environmental Quality Act (**CEQA**) is a California statute passed in 1970, shortly after the United States federal government passed the National Environmental Policy Act (NEPA), to institute a statewide policy of **environmental protection.**

What does CEQA require?

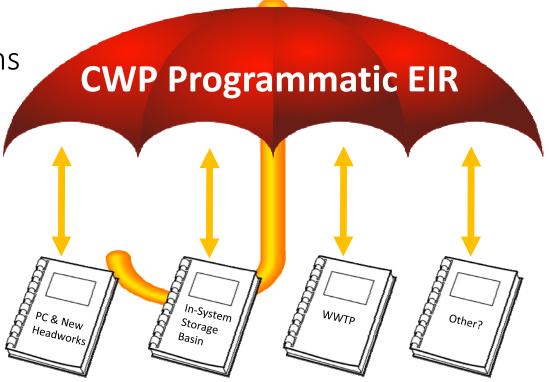
CEQA requires state and local agencies within California to follow a protocol of analysis and public disclosure of environmental impacts of proposed projects and adopt all feasible measures to mitigate those impacts.

Resource Areas Evaluated


- Aesthetics
- Air Quality (including odors)
- Biological Resources
- Cultural Resources
- Geological and Soils
- Greenhouse Gases
- Hazards and Hazardous Materials
- Hydrology and Water Quality

- Land Use
- Noise
- Population and Housing
- Public Services
- Recreation
- Transportation and Traffic
- Utilities
- Cumulative and Growth-inducing Impacts

Overview of PEIR CEQA Process



Programmatic EIR Approach

Programmatic review used for a program or series of linked actions or projects

- PEIRs analyze broad environmental effects of a program; not all impacts can be evaluated at a detailed level
- Future project-specific environmental review may be required

Program Projects

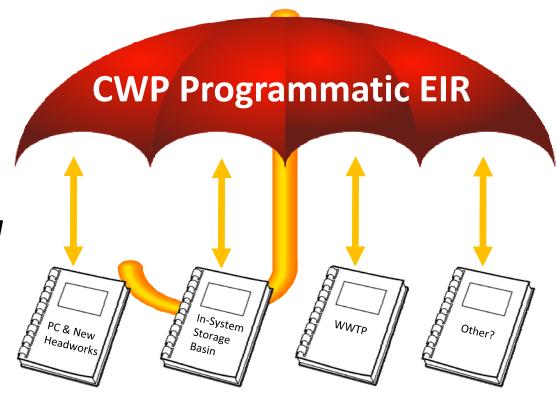
- Two projects evaluated at project level of detail
 - New Headworks Project
 - Primary Clarifier Replacement Project
- New, extended, and upsized sanitary sewer relief pipeline projects
- Rehabilitation and upgrade of pump stations
- New and upgraded WWTP facilities including treatment process options
- Ancillary WWTP facilities (e.g. maintenance facilities, parking, etc.)

Bundled Collection System

PEIR CEQA Process Highlights

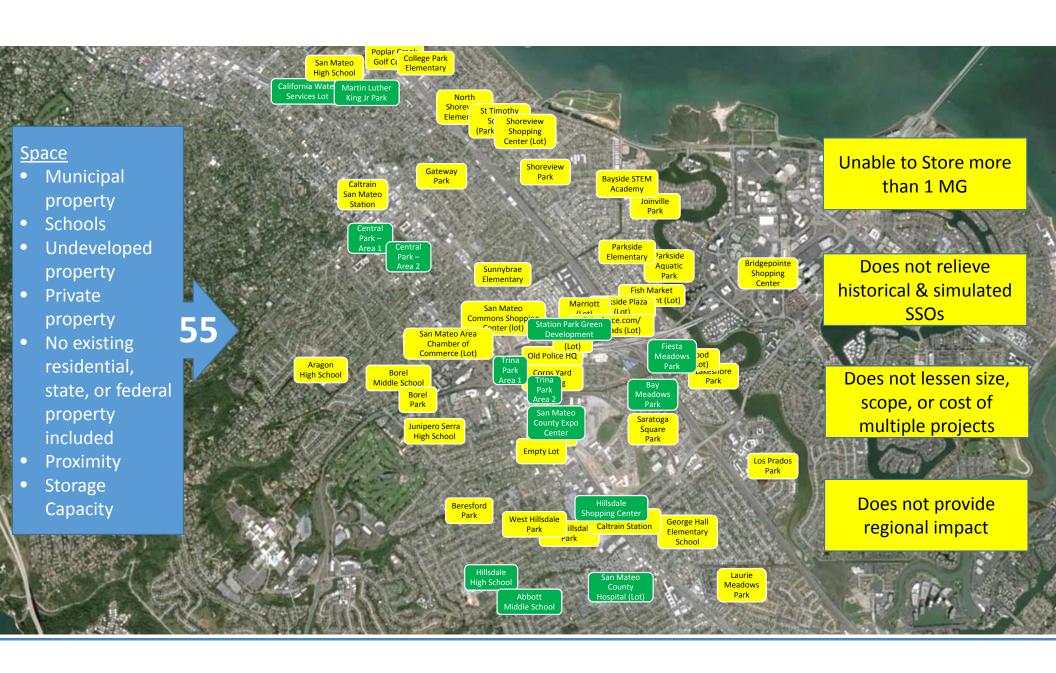
- Full compliance with CEQA notifications, reviews, and requirements
- City provided over <u>90 days</u> of public review for Draft PEIR; CEQA requires <u>minimum 45 days</u>
- City held <u>three Public Works Commission</u> hearings and three additional public outreach opportunities; *CEQA requires one public* hearing for an EIR
- Distributed to <u>15 resource agencies</u>
- Addressed <u>over 180 comments</u> (written and verbal) on Draft PEIR

Final PEIR Approval & Certification


- Only minor changes were made and did not alter the fundamental assessment of environmental impacts
- Public Works Commission recommended that City Council certify the PEIR and adopt the In-System Storage Alternative
- Unanimous June 2016 City Council decisions:
 - Certify PEIR
 - Adopt In-System Storage Alternative
 - Adopt Mitigation Monitoring or Reporting Program (MMRP)

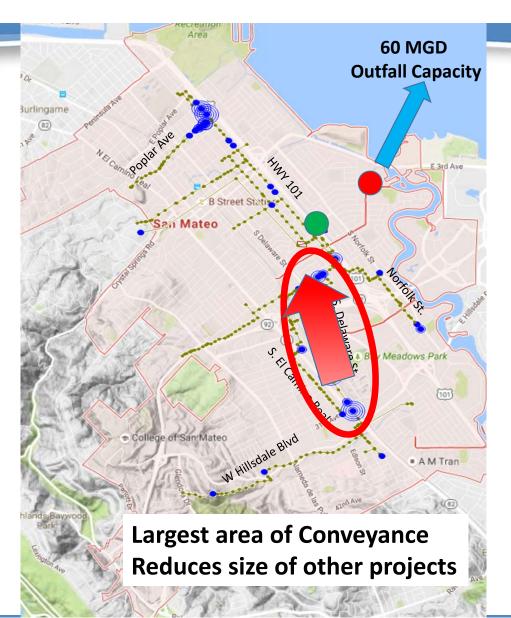
Future CEQA Evaluation

Prior to implementation of individual projects, each project would be evaluated in relation to the Final PEIR and additional CEQA evaluation may be conducted. Additional environmental permits may be required.



Topic 5

Alternatives Selection Process



Peak Wet Weather Hydraulic Model and SSOs

Blue Dots are SSOs Identified through Hydraulic Modeling

High Concentration of SSO Occurrences Along Delaware St

Storage is best way to reduce peak flow

Corporation Yard

Corporation Yard

City Owned Property

Construction would be coordinated with future Corporation Yard Plans

Parking lot repaved over storage facility.

Access hatches installed at pavement grade so traffic can drive on them

During Construction, minimal traffic impacts to residential streets

During O&M, minimal traffic impacts

Bay Meadows Park

When the Bay Meadows Community Park was dedicated to the city, the city accepted title to the property subject to a restriction that the use of the property "shall be limited to park and recreation uses only." This restriction on the use of the property prevents the city from using the property for an in-system storage, since such use is not a park or recreation purpose.

The Program will no longer consider a basin in this location and have focused our attention and analysis on the other alternatives

The findings & this determination will be incorporated into the Alternatives Analysis Report.

What is the difference in estimated cost between the options?

Alt	Name	Construction Cost	Additional Costs
1	Expo Parking Lot	\$28.5 M	Easements, Use Fees
2	Corporation Yard	\$35.7 M	Use Fees
3	Bay Meadows	\$33.3 M	Potential Use Fees
4	Fiesta Meadows	\$33.0 M	Potential Use Fees
5	Hillsdale Plaza & Expo	\$34.5 M	Easements, Use Fees
6	Tunnel Tank	\$78.2 M	Easements

- Storage tank construction costs range from \$28 \$36 million
- Does not include design costs, project and construction contingency, and special site restoration
- Does not include property acquisition or use fees
- Does not include other Basin 2 and 3 pump station and pipeline projects

Storage Site Evaluation Criteria & Selection Process

PEIR Full List

Space

- Municipal property
- Schools
- Undeveloped property
- Private property
- No existing residential, state, or federal property included

55

- Proximity
- StorageCapacity

PEIR Short List

Beneficial Impacts

- Provide regional impact (not just localized benefits)
- Could Lessen Size, Scope, or Cost of Multiple Projects
- Stores more than1 MG
- Where historical and simulated SSOs would be relieved

Design Team

Technical

- Hydraulics
- Constructability
- Right-of-Way
- Contractor Laydown
- Parking
- Storage Capacity
- Soil & Groundwater

Public Input + Design Team

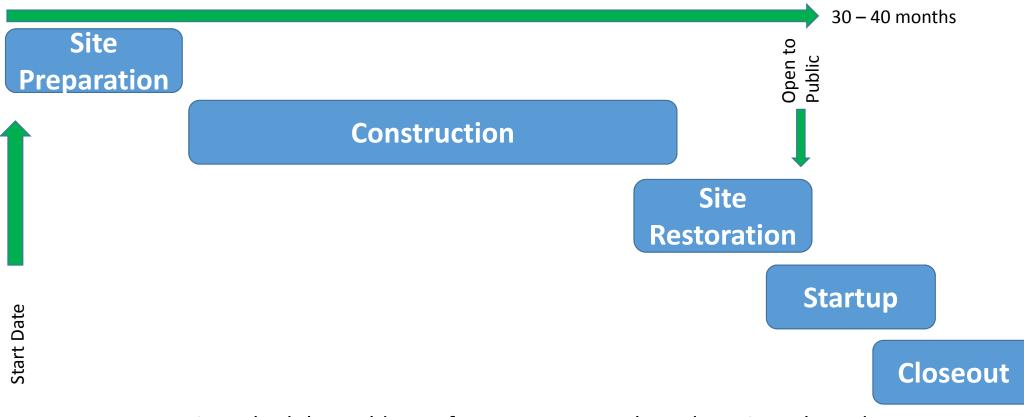
Alternatives Analysis

- Economic 2 or 3
- Environmental
- Technical
- Social

City Council

Final

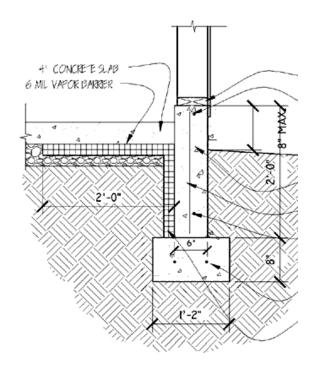
Selection

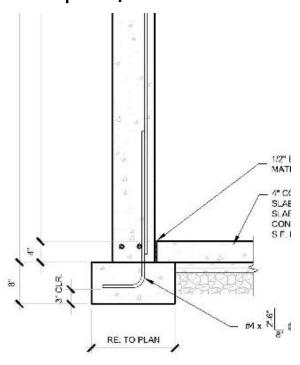


Topic 6

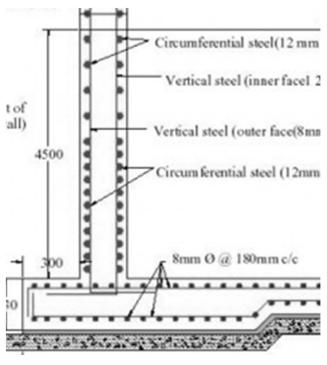
Construction Impacts & Operational Considerations

Underground Storage Construction Schedule


PROTECTING THE BAY FOR A SUSTAINABLE FUTURE


Design Criteria/ Design Consideration	Residential / Commercial	Hospital / Fire Station	Storage Facility
Liquid Tight, Long Term Durability	Goal is water-resistant, not watertight • Architectural Materials used to keep water out	Goal is water-resistant, not watertight • Architectural Materials used to keep water out	 Watertight is a primary structural consideration Structural materials keep water tight Same as wastewater treatment plant tanks
Seismic Resiliency	Goal is life safety • Significant damage is expected → Relative Strength: 1.0	Goal is immediate use • Minor damage expected; facility must remain operational → Relative Strength: 1.5	 Goal is continued operation Minor damage expected; facility may require minor repairs → Relative Strength: 2.08
	Melative Strength. 1.0	Melative Strength. 1.5	Melative Strength. 2.00
Settlement Control	Shallow Reinforced Concrete (RC) foundations common • Strip/wall footings • Thin slabs	Deep Foundations common • Piles or Piers • RC Grade Beams	Deep Foundation RequiredRC Piles expectedThick structural slab over piles

Residential


Relative Strength – 1.0

Hospital/Fire Station

Relative Strength – 1.5

Storage Tank

Relative Strength – 2.1

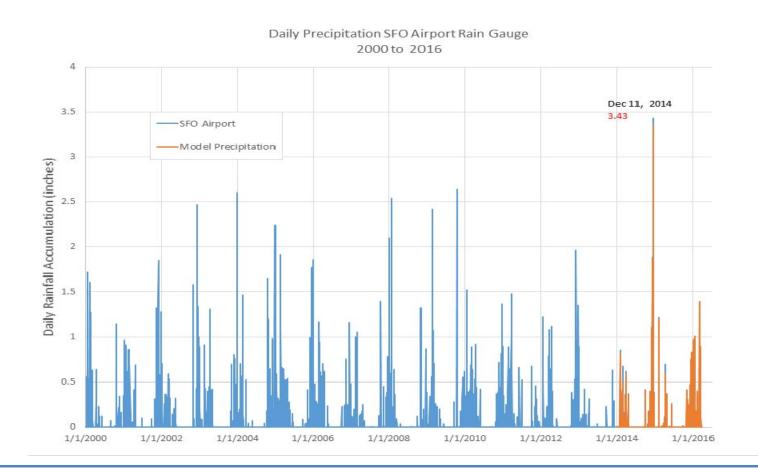
Impacts to Traffic

- Cumulative trips to and from site
- Vehicle Types: heavy trucks, other construction trucks, worker vehicles
- Similar to other commercial construction in Bay Meadows and Hillsdale Area - ie Survey Monkey building
- Estimated Peak Day: 60 Heavy Vehicle Trips, 50
 Worker Commute Trips
- Estimated Average Day: 20 Heavy Vehicle Trips,20 Worker Commute Trips

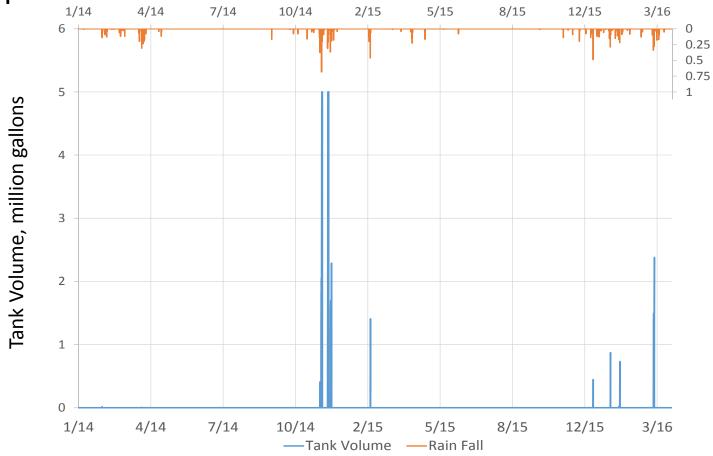
Typical Maintenance Requirements and Impacts

- Quarterly inspections
- Semi-Annual testing
- Annual cleaning
- Five year overhaul
- Twenty-five year equipment replacement

- Minimal noise
 - Less than level of park maintenance activities (i.e. mowing)
- Quarterly to annual maintenance requires 1 to 4 staff onsite
- Similar or lower frequencies than the maintenance at other City pump stations


Remote Sensors Reduce On-Site Activity

- Allow for remote monitoring and operation
- Limit presence of staff onsite
- Automatically operate pumps and valves, clean tanks, and open gates
- Monitor for harmful gasses in tank
- Monitor performance of odor control system
- Alert staff to O&M issues


Predicted Usage Frequency Example

Corp Yard

Model Prediction of Storage Use

Site Alternative	Uses Between Jan, 2014 and March, 2016
Fiesta Meadows Park	11
Expo Center	15
Hillsdale Plaza/Expo	10
Corp Yard	13
Delaware Tunnel	12

Water Usage

59

- Water used to flush tanks after each use
- Water usage during the two year period would be between 0.2 and 0.3 million gallons
- Less than half an Olympic swimming pool
- Represents a 2% to 5% increase in water usage for cleaning during period

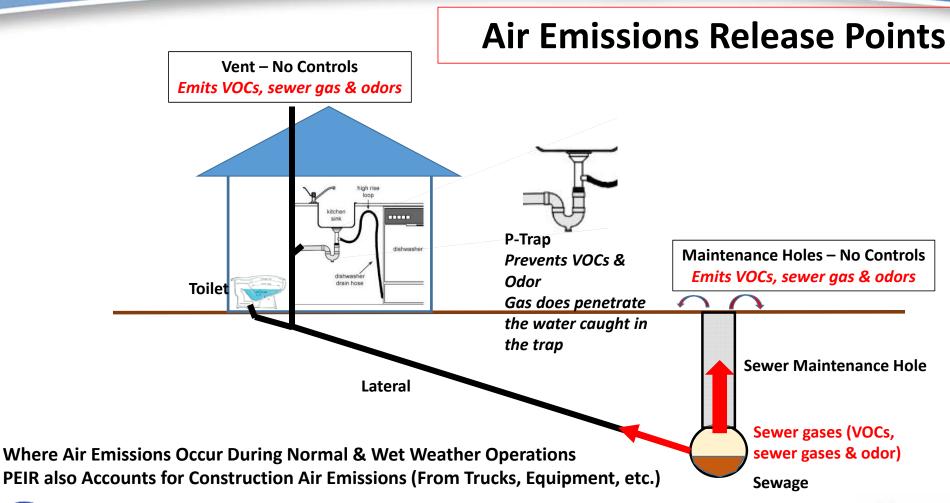
Topic 7

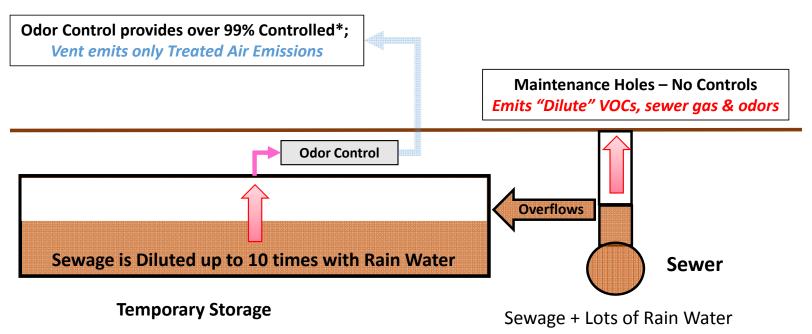
Environmental & Air Quality Mitigations

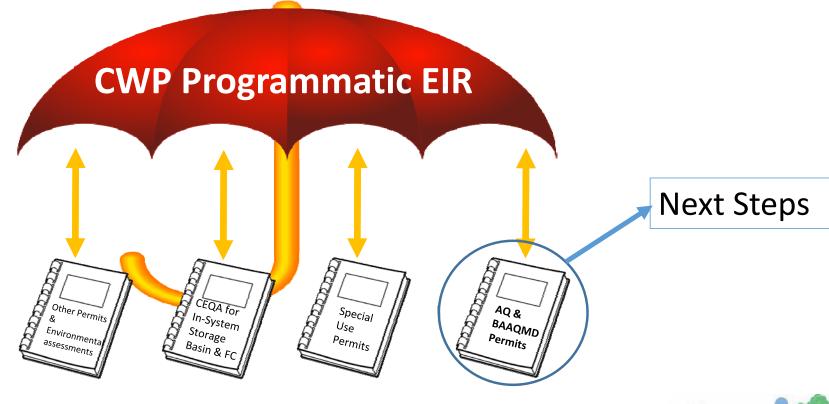
Topics – Questions to Address

- Who Addresses Air and Odor Emissions?
- Where do Air Emissions Occur?
- How Are Air Emissions addressed in PEIR?
- What are the next steps after PEIR?
- What are the Regulatory Trigger Levels for Controls & Human Health Risk Assessments?
- How are other items of concern addressed?
- How is Underground Storage Facility Air Emissions Mitigated and Controlled?
- What is the ISS Facility Air Emissions Abatement Strategy?

Who Addresses Odors and Air Emissions


- Storage Basin's Air Emissions are addressed in US EPA, California EPA (CA EPA), and Bay Area Air Quality Management District (BAAQMD) laws and regulations that are focused on minimizing human health impacts and preventing public nuances during construction and operations
- A valid BAAQMD Authority to Construct (A/C) and Permit to Operate (PO) for the Storage Basin will capture all US EPA, CA EPA and Local laws and regulations that are designed to prevent a public odor nuisance, keep any air emission exhausts below known "unacceptable" human health risks, and manage construction dust, dirt trucks and piling activities air emissions




ISS Air Emissions Release Points

How FC & ISS Air Emissions Are Addressed in the PEIR

Air Emissions Management Post PEIR

1

CEQA <u>Project Specific</u>

Determination

Possible Additional Mitigation, Risk Assessments, and Environmental Investigations

City Applies for BAAQMD Permit To Operate

2.

BAAQMD Permit To Operate (PTO)

PTO covers Local, CA, and Federal Air Quality Laws & Regulations

Protects Human Health & Well Being

BAAQMD Conducts Comprehensive Screenings

3.

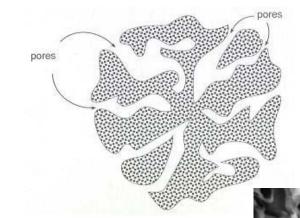
PTO Verification Source Testing

BAAQMD issues Authority to
Construct (A/C) with
Mitigation and Permit
Monitoring & Compliance
Conditions for Construction
& Operations

Odor Control is Installed

To Get PTO, must pass Source Testing

Regulatory Triggers for Controls, Risk Assessments and Further Environmental Investigations


Pollutant	Regulatory Trigger Amount (lb/day)	ISS Operating Worst-Case Emission (lb/day)	FC Operating Worst-Case Emissions (lb/day)
VOC – Major Source (MS) and BACT Trigger	10	<1	<10
CO – General Conformity, MS	200,000	0	0
NOx – General Conformity, MS	200,000	0	0
SOx – General Conformity, MS	200,000	0	0
PM – General Conformity	200,000	0	0
HAPs – MACT Trigger (US EPA)	20,000 per HAP and/or 50,000 Total HAPs	<1	<10
Air Toxics – Risk- Assessment Trigger for Chronic Exposure	Greater than 1 (Unit) = Risk Assessment	<1	<1
Air Toxics – Risk Assessment Trigger for Acute Exposure	Emission Rates Greater than Allowed in BAAQMD Table 2-5-1 = Risk Assessment	All Emission Rates less than allowed in BAAQMD Table 2-5-1	All Emission Rates less than allowed in BAAQMD Table 2-5-1

How Other Items Of Concern Are Addressed

Pollutant of Concern	Mitigation	Future Actions
Biotoxins – Mold & Fungi Spores	Cleaning after each use 24/7 continuous ventilation — system will be dry and out of use over 8,000 hrs/yr	If new Regulations warrant additional mitigation for these type of compounds, then mitigation will be implemented
By-Products of Construction Activities	Implement best practices for dust control Diesel emissions regulated under CA EPA regulations	Will require sources to meet any future emission standards during construction in construction contracts as passed by CA for these types of emission sources.
Additional Chemicals not currently or pending being regulated by Federal, CA, or BAAQMD Agencies	Most Compounds of Concern are currently regulated by Air Toxics, HAPS, PM, and VOCs regulations	If a new regulation focused on these compounds of concern is passed, then will implement mitigation as required

Carbon Odor Scrubbers are Highly Efficient at Removing Odors and Air Emissions

- Large pore surface area adsorbs large mass of odors & air emissions
- 3 grams (0.1 ounces) has surface of a football field!
- Removes +99 percent of H2S and 90 percent + of other odors and air emissions

ISS Facility Air Emissions Abatement Strategy

Technology	H2S (% Removal)	Total Odors (% Removal)	Ammonia (% Removal)	VOCs (% Removal)	Other Pollutants – PM, HAPs, Air Toxics, Vapors (% Removal)
Carbon	Range is 80 to	Range is 70 to	Range is 50 to 90 ISS Application is 90	Range is 90 to	Range is 95 to
Scrubber	+99	+99		+99	+99
System and	ISS Application	ISS Application		ISS Application	ISS Application
Exhaust Vent	is +99	is +99		is +99	is +99

Odor Control Requirements - BAAQMD

BAAQMD Law/Regulation	Allowable H2S & Odor Emissions	Controlled ISS Estimated H2S and Odor Emission
Regulation 9, Rule 2 – H2S Averaging Period = any 3 minutes period	<60 ppbv	6.7 ppbv
Regulation 9, Rule 2 – H2S Averaging period = any 60 minutes period	<30 ppbv	4.0 ppbv
Regulation 7 – Table 1 – Total Odors (D/T)*	<1000 D/T	300 D/T

How Odors & Construction Dust Are Measured

Dust Sampler

Odor Samplers

Trained Ambient Samplers

Field Analysis & Trained Panelist

Field Sampling –
Odors and
Construction
Dust/Particulate
Matter (PM)

Ambient
Community
Odor Sampling

Laboratory
Analysis –
Field Analysis
and Odor Panels

Next Steps

- Continue alternatives analysis
- Future meetings to restart in January, 2017
- Notifications via website, email, NextDoor, and mailers

Methods to Stay Informed & Provide Input

Sign Up for Email Updates

info@cleanwaterprogramsanmateo.org

Register for Private Neighborhood Updates

www.NextDoor.com

Contact Us

www.CleanWaterProgramSanMateo.org 650-727-6870

